
Using OmniSIG SDK
to Create a Drone
Detection Model



Using OmniSIG SDK
to Create a Drone Detection Model

Abstract

This application note details the process of using the OmniSIG SDK to create a custom 
neural network model for OmniSIG that is focused on performing signal classification on 
wireless signals emitted from small commercial drones.  This note will go through the 
end-to-end process of capturing data to create the dataset, to labeling and annotating the 
data, training the new model using this new dataset, and finally deploying the model as an 
OmniSIG runtime sensor.
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Introduction to Commercial Drone Signals............................................................

...............................................................................

Commercial and hobbyist drones come in many different shapes and sizes, both physically and with 
respect to their wireless control and data signal types.  Nikola Tesla had one of the first visions of 
unmanned aerial vehicles and described his vision in the patent, “Method of and apparatus for 
controlling mechanism of moving vessels or vehicles,” that was granted November 8, 1898.  In this 
patent he suggested that these vehicles would be controlled by “waves, impulses, or radiations”.

It was not until 2006 that non-military, commercially available drones really started “taking off”.  The US 
Federal Aviation Administration (FAA) issued its first commercial drone permit, and for the next 8 years 
they issued about two permits a year.  It was not until Amazon CEO, Jeff Bezos announced in 2013, 
that the company would explore using drones as a delivery method that the commercial drone industry 
really began to get big.  In 2015 the FAA issued over 1000 permits, which grew to 3100 in 2016.  
Today, hobby drones have grown into a multi-billion-dollar industry with over three million personal 
drones estimated to have been manufactured in 2017 alone.

The drone startups have been concentrated in the US, China, and Israel, with Dajiang Innovations 
(DJI), in China, accounting for 36% of the North American commercial drone sales in 2019.

Commercial drones are controlled and send data, primarily video, back over wireless connections.  The 
types of wireless connections that the drones use can vary.  Some use proprietary protocols while 
others use more off-the-shelf mechanisms.  Many commercial drones, such as those from early 
versions of DJI and Parrot, used 802.11 or WiFi, in the 2.4 GHz frequency band, as the technology for 
transmitted data.  Many inexpensive commercial drones still use WiFi for control today.  WiFi is 
convenient for manufacturers as commercial chips are cheap, readily available and allow consumers 
to control and receive data easily from their smartphone.  However, WiFi does have disadvantages. It 
is inherently limited in range and when flying in areas with other WiFi networks the signal quality may 
be degraded.  This decreases the range even further or causes poor video quality.  In recent years 
manufacturers have been adding in their own transmission systems that provide for better interference 
mitigation and longer ranges.  This complicates the development for creating systems that detect and 
classify different types of drone signals as the drone wireless communication systems ecosystem has 
become much more diverse each day.

Figure 1. Image from Nikola Tesla's patent on unmanned vehicles
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Wi-Fi-based Systems

Control and data packets embedded in standard 
802.11 frames on either the 2.4 GHz or 5.8 GHz band.  
In many cases the drones will automatically switch 
between the 2.4 GHz and 5.8 GHz bands based on the 
current wireless environment to avoid interference. 

Wi-Fi-based systems can easily be detected using standard 802.11 discovery mechanisms.  The 
manufacturers are allotted blocks of MAC addresses which allow Wi-Fi survey systems, such as 
Kismet, to quickly discern whether a Wi-Fi enabled drone is in the local area. Most also have 
well-known wireless network identifiers (SSID’s) that can be detected.

Detecting and classifying signals for drones that do not use Wi-Fi for their control and data is 
traditionally much more difficult as many of the signal types are proprietary and can operate on a wide 
range of frequencies.

Non-WiFi Transmission Systems

There are thousands of drone companies that exist today with products on the market.  Some are 
Wi-Fi and many are not.  As an example, DJI has three separate proprietary transmission systems for 
their drone products alone.  These protocols are less likely to be affected by interference and have a 
longer transmission range.

DJI Mavic Pro (Ocusync), Phantom 4 Pro V2.0 (Ocusync), Phantom 4 Pro (LB), Phantom 4 Advanced 
(LB), Inspire 2 (LB2), Matrice 200 Series (LB2) and Matrice 600 Pro (LB2)

The hobbyist / drone sport market also has a number of other general purpose controllers that use the 
ISM bands (915 MHz, 2.4 GHz, and the 5.8 GHz bands) with complex frequency-hopping controllers 
such as those made by FrSky and FlySky.  There are also long-range frequency-hopping telemetry 
systems that support the MAVLink protocol which operate in the 433 or 915 MHz ISM bands.

For these systems, as opposed to WiFi-based systems, the uplink, or the control signal from the 
controller to the drone is a completely different signal type than the video feed coming from the drone 
to the operator.  It is possible that hobbyist drones can in fact use frequency-hopping controllers, 
MAVLink telemetry, and WiFi video all on the same platform.

Parrot Bebop 1, Parrot Bebop 2, DBPower UDI, 
DBPower Discovery, DJI Tello, Tenergy TDR, Wingsland, 
DJI Spark (without the DJI controller), Mavic Air (without 
the DJI controller)

Common drones that use this transmission system:

Common drones that use DJI’s Ocusync and Lightbridge (LB / LB2) protocols:
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commonly operate at 433 MHz.  This lower frequency provides a much greater range but does not 
allow enough bandwidth to provide a high-quality video link.  There are many different systems that 
operate in the 433 MHz band, each having their own signal type.  These signal types are typically some 
variant of a narrowband FSK signal.

Range extension systems, like the one shown in Figure 
2, are also available for commercial drones that 

DragonLink, EzUHF, OpenLRS

The OmniSIG sensor and the OmniSIG SDK are well suited for building systems that quickly detect and 
classify commercial drone signals across all of these areas.  Whether they are 802.11-based and 
OmniSIG is paired with a WiFi post-processor or they are not 802.11-based and the OmniSIG SDK is 
used to train a neural network to recognize the signals, OmniSIG provides a innovative way to detect 
and classify commercial drone signals at low SNRs and the SDK provides a way to add new drone 
signals to the system within hours.

OmniSIG provides a innovative 
way to detect and classify 
commercial drone signals at 
low SNRs and the SDK 
provides a way to add new 
drone signals to the system 
within hours.

The next sections will overview the SDK and walk through 
an example of using the OmniSIG SDK to build an RF 
dataset that consists of DJI Ocusync uplink and downlink 
signals.  We will show how this dataset is used by the SDK 
to train a new OmniSIG model that can be used by the 
runtime OmniSIG sensor to immediately detect and classify 
DJI Ocusync signals.   

In terms of signal characteristics, they range from very 
wideband OFDM signals, that typically carry data from 
the drone down to the controller, to small narrowband 
bursts that hop around the spectrum.  These latter 
hopping transmissions are typically the control signals 
which need to be more robust to interference so as not 
to create a situation where the drone is not controllable.

Common range extension systems:

Figure 2. DragonLink Drone Range Extender
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OmniSIG provides a new class of RF sensing using DeepSig’s 
pioneering application of Artificial Intelligence (AI) to radio 
systems. Going beyond the capabilities of existing spectrum 
monitoring solutions, OmniSIG’s custom deep learning approach 
leverages convolutional neural networks in addition to several 
custom RF tailored network architectures that take advantage of 
complex baseband IQ data using both the time and frequency 
domains, to maximize the features learned by the AI.

Compared to traditional methods, OmniSIG’s approach provides 
higher sensitivity and is more robust in harsh and dynamic 
spectrum environments, while also requiring less dynamic range 
and computational resources. For drone detection applications, 
OmniSIG can achieve increased sensitivity for detecting a wide 
range of drone signal types, effectively allowing the sensor to 
have an increased standoff.  The sensor component can be 
integrated onto a variety of hardware platforms, both embedded 
and large.  It has been developed with an open API and standard 
output specifications that allow it to be easily integrated into 
external systems.

DeepSig provides a default network model for the runtime sensor 
that includes support for detecting and classifying a variety of 
signals.  A powerful capability comes into play with the OmniSIG 
SDK, where users can create their own network models using 
their own datasets to enable the sensor to detect and classify the 
customers specific signals-of-interest.

The OmniSIG SDK contains tools for:

OmniSIG Sensor and SDK Overview....................................................

3) Evaluating its performance 4) Deploying the trained deep learning
    model into an OmniSIG runtime

2) Training an OmniSIG Sensor
    model with labeled data

1) Sorting, labeling, and curating RF data

SIGNAL TYPES

OmniSIG’s default model 
supports the detection and 
classi�cation of the following 
signal types:

• LTE
• WCDMA
• CDMA2K
• GSM
• P25
• FM

• WIFI
• BLUETOOTH
• ATSC
• DMR
• LTE UPLINK
• DCS/DPL

OmniSIG also identi�es
unknown signals that it
unable to classify as a
trained signal type.  This is
useful for immediately
identifying anomalies.

Additional signal types can
be added by using the
OmniSIG SDK tool.
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This tool suite is a market-first, enabling customers to custom-tune DeepSig’s deep learning models 
for signal detection and classification for their specific RF signatures and applications.

OmniSIG SDK was designed by engineers with decades of industry experience to enable signal 
processing on complex-valued RF sample data. It contains specialized features to assist in working 
with large RF datasets that don’t exist elsewhere.

The OmniSIG sensor and the OmniSIG SDK combine to make the full capability development process.  
The standard process begins with the building of the training set.  In the case of the drone data set, 
this consists of taking over-the-air snapshots of drones in a variety of operating modes.  These 
snapshots are then labeled using the OmniSIG SDK and provided to the training routines that create a 
specific OmniSIG neural network model file that is trained to identify the signals that were annotated.  
The model file is passed to the OmniSIG engine when the OmniSIG sensor is started and the new 
signals can now be detected and identified in real-time.  This overall process is depicted in Figure 3.

The following sections detail the specifics of this process for developing a new custom neural network 
model, using the OmniSIG SDK, to detect and classify several different types of commercial drone 
wireless signals.

Figure 3. OmniSIG capability development workflow
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The first step in training OmniSIG to recognize a new signal is to capture a few snapshots using a soft-
ware-defined radio (SDR). For this exercise, we will be working with a DJI Mavic Pro drone. If you do 
not have access to a particular model of drone, it is possible to use captures from the field, but it may 
require additional care in the selection of radio hardware and cleaning of training data.

Capturing RF snapshots can be done in a variety of ways using a variety of different hardware and soft-
ware platforms.  In addition, the diagnostic user interface for OmniSIG has a record feature that is 
capable of recording complex 32-bit float IQ data streams.  OmniSIG can work with multiple types of 
data formats including complex 16-bit integer and complex 32-bit floats (these two are the most 
common).  The training dataset can consist of RF recordings from different radios and still maintain a 
high-performance classification.  DeepSig leverages radios from many different venders for testing and 
demonstration purposes, including Epiq Solutions, National Instruments, Herrick Technologies, and 
many more.

For creating the Ocusync dataset, we connected a software-defined radio to a gaming laptop, with an 
Nvidia RTX2070 GPU and verified that the radio was operating properly. Since this model of drone 
operates in the 2.4 GHz and 5 GHz ISM frequency bands, it is helpful to move to a relatively RF isolated 
environment and power down any electronic devices using Wi-Fi or Bluetooth including phones, 
tablets, and Wi-Fi/Bluetooth radios on the recording laptop.  Building the dataset in an isolated envi-
ronment helps when labelling the data as it helps minimize unwanted signals.  It is also recommended 
that if the drone configuration supports manual or fixed channel configuration, that this mode be ena-
bled.  This will lock the drone and controller onto a single frequency band that is easily identified, and 
will prevent the drone from reconfiguring its frequency bands while recording is happening (just remem-
ber to change it back to auto later if the mode is changed for signal capture).

In our recording case, the drone was configured to use a manual channel setting in the middle of the 
2.4 GHz ISM band.  Figure 4 shows the OmniSIG diagnostic interface with a live drone signal active as 
seen by our SDR with an antenna.

Figure 4. Acquiring an RF capture using the OmniSIG engineering interface

Building the Training Dataset...........................................
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Since we have not trained a model yet to specifically classify it as the Ocusync protocol, the default 
model does its best to classify the signal.  Since Ocusync is similar in many ways to LTE, in the screen-
shot above, you can see that the model is classifying it as LTE.  OmniSIG is reporting its confidence 
level as ~80%.  Typically, anything below 90% would indicate that this may be a different signal type 
than previously trained, but it is similar in signal features to the trained signal.

On the right-hand side of the diagnostic interface, if you click the OmniSIG controls button at the top, 
a set of controls will appear.  Within this section will be several options and a button to trigger a record-
ing.  These recordings can be based on time (the default), or number of samples.

Our isolated training snapshots were recorded in the stairwell of our office building in the following 
manner.

While we used the OmniSIG sensor interface itself to collect the signals, any method for recording RF 
snapshots will suffice as long as the data gets written to disk in either complex 16-bit integer or 32-bit 
float formats.

We recorded a total of 15 seconds of Ocusync transmissions from the drone and controller and select-
ed the best 5 seconds to use for training. Reasons for discarding data included signal clipping, due to 
high gain, and interference from unknown emitters.  This process could be further enhanced by taking 
the drone to an area outside where it could be flown in a real-world environment, and additional cap-
tures could be taken while real in-flight control signals are also present.

1) Start the OmniSIG Sensor and navigate to the diagnostic GUI at http://localhost:4000
2) Open the controls (upper right button) and tune the radio to find the drone uplink 
    and downlink signals
3) Adjust the gain so that the signal is clear but not clipping, which may be lower than
    expected if the source is nearby
4) Set the recorder to a duration of 1 second
5) Record 5-10 snapshots, with at least a few extras that can be used if some of the
    others are contaminated with too many interfering signals
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After the RF snapshots have been collected, they must be properly labeled so that the training process 
can properly teach the neural network about the signals.  The next step is to get the RF snapshots that 
have been collected into the OmniSIG SDK filestore.  The user can simply drag and drop the RF snap-
shots from the drone into the web-based SDK filestore allowing access to those files for the rest of the 
SDK functions. 

The next step is to annotate or literally mark up the RF snapshots to indicate which bursts of energy 
correspond to the drone uplink and downlink signals. This is a good time to screen the snapshot for 
any stray signals and discard or crop the snapshot accordingly. 

Figure 5 shows the OcuSync RF snapshot loaded into 
the OmniSIG SDK labeling tool, ready to be labeled.  
The high-bandwidth OcuSync downlink signal of the 
Mavic Pro is composed of 10 or 20 MHz wide OFDM 
bursts. The uplink signal is a frequency hopper that is 
transmitted during gaps in the downlink. We have 
annotated these separately with the “OcuSync Control” 
and “OcuSync Video” labels

Once the �rst snapshot has been annotated 
train a model using only that �rst snapshot.  
Run additional RF snapshots through 
OmniSIG using that model. The output �les 
are then imported into the SDK and typically 
only require minor adjustment to accurately 
label the signals.

Figure 5. Fresh RF snapshot loaded into the SDK annotation tool

Labelling and Annotating the Data..................................................

Quick Trick to Speed up Annotation
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Figure 6 shows the RF snapshot from the Ocusync dataset after labelling is complete.  Both the 
downlink signals and the uplink signals have been annotated, each labelled with their own specific 
signal type.

Annotating each file by drawing boxes around the active signal regions and assigning a label is 
straightforward, and each 1 second snapshot takes about 15-20 minutes to annotate by an 
experienced user.  This is because a 1 second snapshot may consist of hundreds of bursts that need 
to be annotated. Once the annotations are complete, the metadata file that contains the annotated 
data can be saved.  It will save this file in the same location as the actual RF snapshot.

To assist users in the annotation process, the OmniSIG SDK also has an “auto-annotation” feature.  
This feature provides a quick triage of the data and tries to draw boxes around the energy in an 
automated fashion.  The intent is to triage the data so that the user only needs to annotate at most 
20-30% of the data and more time can be spent in the training process as opposed to the labeling and 
annotation process.

Figure 6. OmniSIG SDK fully annotated Ocusync control and data signals
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Figure 7. OmniSIG SDK 50 epochs into training Ocusync custom model

Once annotation is complete, for all the data of the signals of interest, in this case, the Ocusync RF 
snapshots, we select the files that we would like to include into this new custom model on the “Train-
ing” tab.  At this point, training commences at the click of the “Train” button.  Figure 7 shows a snap-
shot of the training page while training the Ocusync models.  Users are presented with a basic loss 
curve that indicates how well the training process is proceeding.  The lower the curve, the less error 
there is between the current set of trained weights and the automated test set that is created during 
the training process. The SDK will stop training once the loss curve converges or the user can manually 
stop the training.

Training the drone detection model takes about six to eight hours on a high-end gaming PC, using 
both the annotated drone snapshots and the available DeepSig Training Dataset, which adds to the 
robustness of the model in real-world scenarios and minimizes false detections on similar OFDM 
signals.  If you want a custom model that will only identify the annotated drone snapshots, training on 
the same PC would take approximately 1-2 hours.  Other signals would either not be identified or 
would be identified as “Unknown” signal types.

Training can be performed on a variety of hardware platforms.  For this whitepaper, the Ocusync 
custom model was trained on a laptop with an Nvidia RTX2070 GPU and 8 GB of video memory. This 
configuration is the minimum requirements that we would suggest for training custom OmniSIG 
models.

Training the New Custom Model...............................................
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Deploying the new custom model to the OmniSIG sensor is remarkably simple.  Once the new custom 
model is saved, simply pass the location of the model file in as a command line parameter when start-
ing the OmniSIG sensor. This causes the neural network within OmniSIG to use the parameters and 
labels of that custom model as opposed to the default model that is built into OmniSIG. 

The custom model file size ranges from 5 – 20 MB in size and can be easily pushed over a low-band-
width networks to a remote OmniSIG sensor to immediately enable new capabilities. 

The OmniSIG Sensor diagnostic GUI can be used to verify that the trained model is operating correctly. 
Powering on the drone and tuning the radio to its uplink and downlink frequency should display detec-
tions equivalent to the labels that the snapshots were annotated with, in this case “OcuSync Video” 
and “OcuSync Control”

With this new custom model trained, users can now view the engineering GUI, as shown in Figure 8, 
or output a stream of classifications to an external post-processor for further action.  OmniSIG can 
publish the annotations several different ways, including ZeroMQ, websockets, over the network to an 
ElasticSearch database for analysis with the Kibana data visualization tools (the ELK software stack), 
or simply output to files.

Figure 8. After training, the sensor can immediately detect and classify the Ocusync signals

Deploying the Model in the OmniSIG Sensor...............................................................
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Figure 9 shows one example of the dashboard elements that can be created using the OmniSIG 
Sensor along with the ELK stack. It is straightforward to create powerful spatial, temporal, or spectral 
visualizations that allow you to explore the RF environment around identify radio anomalies.

Integrating the OmniSIG sensor into any system, to act as the flexible front-end RF survey component, 
is straightforward as it has been developed using open specifications and users are provided with well 
documented API’s for both the input, control, and output of the sensor.  The OmniSIG sensor will 
increase the sensing and scanning speed of systems, while also adding in new ways to continually 
evolve the capabilities of the system.  Whether its drone signals, commercial cellular signals, or some 
other unknown signal type, the OmniSIG sensor can classify it by training on a very little amount of 
data. 

For more information about our drone datasets
and using the OmnniSIG sensor, please see our website
at DeepSig.ai or contact us at info@deepsig.ai.

Figure 9. An example Kibana dashboard element to view the distribution of
detected signal types in the scanned radio spectrum

https://www.deepsig.ai/

